If #A = <4 ,3 ,-7 >#, #B = <5 ,7 ,-3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 24, 2016

The angle is #=70.8º#

Explanation:

Let's calculate #vecC#

#vecC=vecA-vecB#

#vecC=〈4,3,-7〉-〈5,7,-3〉=〈-1,-4,-4〉#

The angle between the #vecA# and #vecC# is given by the dot product.

#vecA.vecC=∥vecA∥*∥vecC∥*costheta#

The dot product is

#vecA.vecC=〈4,3,-7〉.〈-1,-4,-4〉=(-4-12+28)=12#

The modulus of #vecA# is #=∥vecA∥=∥〈4,3,-7〉∥=sqrt(16+9+49)=sqrt74#

The modulus of #vecC# is #=∥vecC∥=∥〈-1,-4,-4〉∥=sqrt(1+1+16)=sqrt18#

Therefore,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=12/(sqrt74sqrt18)=0.329#

#theta=70.8º#