If #A = <4 ,3 ,-7 >#, #B = <5 ,7 ,-4 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 9, 2017

The angle is #=83.5#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,3,-7〉-〈5,7,-4〉=〈-1,-4,-3〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,3,-7〉.〈-1,-4,-3〉=-4-12+21=5#

The modulus of #vecA#= #∥〈4,3,-7〉∥=sqrt(16+9+49)=sqrt74#

The modulus of #vecC#= #∥〈-1,-4,-3〉∥=sqrt(1+16+9)=sqrt26#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=5/(sqrt74*sqrt26)=0.114#

#theta=83.5#º