If #A = <4 ,-5 ,-4 >#, #B = <5 ,1 ,-3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 9, 2017

The angle is #=49.9#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,-5,-4〉-〈5,1,-3〉=〈-1,-6,-1〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,-5,-4〉.〈-1,-6,-1〉=-4+30+4=30#

The modulus of #vecA#= #∥〈4,-5,-4〉∥=sqrt(16+25+16)=sqrt57#

The modulus of #vecC#= #∥〈-1,-6,-1〉∥=sqrt(1+36+1)=sqrt38#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=30/(sqrt57*sqrt38)=0.644#

#theta=49.9#º