If #A = <4 ,-5 ,-4 >#, #B = <5 ,1 ,-6 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 25, 2018

The angle is #=68.1^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,-5,-4〉-〈5,1,-6〉=〈-1,-6,2〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,-5,-4〉.〈-1,-6,2〉=-4+30-8=18#

The modulus of #vecA#= #∥〈4,-5,-4〉∥=sqrt(16+25+16)=sqrt57#

The modulus of #vecC#= #∥〈-1,-6,2〉∥=sqrt(1+36+4)=sqrt41#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=18/(sqrt57*sqrt41)=0.37#

#theta=arccos(0.37)=68.1^@#