If #A = <4 ,7 ,2 >#, #B = <1 ,1 ,-4 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 8, 2017

The angle is #=28º#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,7,2〉-〈1,1,-4〉=〈3,6,6〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,7,2〉.〈3,6,6〉=12+42+12=66#

The modulus of #vecA#= #∥〈4,7,2〉∥=sqrt(16+49+4)=sqrt69#

The modulus of #vecC#= #∥〈3,6,6〉∥=sqrt(9+36+36)=sqrt81=9#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=66/(sqrt69*9)=0.88#

#theta=28#º