If A = <4 ,7 ,2 >, B = <1 ,1 ,-4 > and C=A-B, what is the angle between A and C?

1 Answer
Mar 8, 2017

The angle is =28º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈4,7,2〉-〈1,1,-4〉=〈3,6,6〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈4,7,2〉.〈3,6,6〉=12+42+12=66

The modulus of vecA= ∥〈4,7,2〉∥=sqrt(16+49+4)=sqrt69

The modulus of vecC= ∥〈3,6,6〉∥=sqrt(9+36+36)=sqrt81=9

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=66/(sqrt69*9)=0.88

theta=28º