If #A = <4 ,-9 ,2 >#, #B = <1 ,-3 ,-8 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Aug 3, 2017

The angle is #=44.7^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈4,-9,2〉-〈1,-3,-8〉=〈3,-6,10〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈4,-9,2〉.〈3,-6,10〉=12+54+20=86#

The modulus of #vecA#= #∥〈4,-9,2〉∥=sqrt(16+81+4)=sqrt101#

The modulus of #vecC#= #∥〈3,-6,10〉∥=sqrt(9+36+100)=sqrt145#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=86/(sqrt101*sqrt145)=0.74#

#theta=44.7^@#