If #A = <5 ,2 ,5 >#, #B = <6 ,5 ,3 ># and #C=A-B#, what is the angle between A and C?
2 Answers
The angle is
Explanation:
Let's start by calculating
The angle between
Where
The dot product is
The modulus of
The modulus of
So,
We can start by finding
#vecC = <5,2,5> - <6,5,3>#
# = <(5-6),(2-5),(5-3)>#
#=<-1,-3,2>#
The angle between two vectors can be found using this general formula:
#cos(theta)=(veca*vecb)/(|veca|*|vecb|)#
We can start by finding the dot product of A and C.
#vecA*vecC=<5,2,5> *<-1,-3,2>#
#=(5*-1)+(2*-3)+(5*2)#
#=-5-6+10#
#=-1#
Now we can find the product of the magnitude of each vector.
#|vecA|=|<5,2,5>#
#=sqrt(5^2+2^2+5^2)#
#=sqrt(54)#
#=3sqrt(6)#
#|vecB|=|<-1,-3,2>#
#=sqrt((-1)^2+(-3)^2+2^2)#
#=sqrt(14)#
So the product of the magnitudes is
We now have:
#cos(theta)=-1/(6sqrt21)=-sqrt21/126#
Solving for
#theta=arccos(-sqrt21/126)#
#=92 ^o#