If A = <5 ,2 ,-5 >A=<5,2,5>, B = <6 ,5 ,3 >B=<6,5,3> and C=A-BC=AB, what is the angle between A and C?

2 Answers
Aug 7, 2018

:. theta=cos^-1(29/(sqrt3996))~~(62.69)^circ

Explanation:

Here,

A=<5,2,-5> and B=<6,5,3>

:.C=A-B=<5,2,-5> - <6,5,3>

C= <-1,-3-8>

Let , veca=<5,2,-5> and vecc=<-1,-3,-8> be

the two vectors.

:.|veca|=sqrt((5)^2+(2)^2+(-5)^2)=sqrt(25+4+25)=sqrt54

|vec c|=sqrt((-1)^2+(-3)^2+(-8)^2)=sqrt(1+9+64)=sqrt74

Dot product : a*c= <5,2,-5> *<-1,-3,-8>

:.a*c=(5)xx(-1)+(2)xx(-3)+(-5)xx(-8)

:.a*c=-5-6+40=29

Now the angle between veca and vecc is:

theta=cos^-1((a*c)/(|veca||vecc|))=cos^-1((29)/(sqrt54sqrt74))

:. theta=cos^-1(29/(sqrt3996))~~(62.69)^circ

Aug 7, 2018

Angle between vec A and vec C is 62.69^0

Explanation:

vec A =<5,2,-5> and vec B =<6,5,3>

vec C=vec A- vecB = (< 5,2,-5 >) - (< 6,5,3 >)

:. vec C=< 5-6,2-5,-5-3 > =< -1,-3,-8 >

Let theta be the angle between vec A and vec C ; then we

know cos theta= (vec A*vec C)/(||vec A||*||vec C||) or

cos theta=

((5*-1)+(2*-3)+(-5*-8))/(sqrt(5^2+2^2+(-5)^2)* sqrt((-1)^2+(-3)^2+(-8)^2))

or cos theta= 29/(sqrt 54*sqrt 74)=29/63.21 ~~0.4588

:. theta=cos^-1(0.4588)~~62.69^0

The angle between vec A and vec C is 62.69^0 [Ans]