If #A = <5 ,2 ,-5 >#, #B = <6 ,5 ,3 ># and #C=A-B#, what is the angle between A and C?

2 Answers
Aug 7, 2018

#:. theta=cos^-1(29/(sqrt3996))~~##(62.69)^circ#

Explanation:

Here,

#A=<5,2,-5> and B=<6,5,3>#

#:.C=A-B=<5,2,-5> - <6,5,3> #

#C= <-1,-3-8>#

Let , #veca=<5,2,-5> and vecc=<-1,-3,-8># be

the two vectors.

#:.|veca|=sqrt((5)^2+(2)^2+(-5)^2)=sqrt(25+4+25)=sqrt54#

#|vec c|=sqrt((-1)^2+(-3)^2+(-8)^2)=sqrt(1+9+64)#=#sqrt74#

Dot product : #a*c= <5,2,-5> *<-1,-3,-8>#

#:.a*c=(5)xx(-1)+(2)xx(-3)+(-5)xx(-8)#

#:.a*c=-5-6+40=29#

Now the angle between #veca and vecc# is:

#theta=cos^-1((a*c)/(|veca||vecc|))=cos^-1((29)/(sqrt54sqrt74))#

#:. theta=cos^-1(29/(sqrt3996))~~##(62.69)^circ#

Aug 7, 2018

Angle between #vec A and vec C# is #62.69^0#

Explanation:

#vec A =<5,2,-5> and vec B =<6,5,3> #

#vec C=vec A- vecB = (< 5,2,-5 >) - (< 6,5,3 >)#

#:. vec C=< 5-6,2-5,-5-3 > =< -1,-3,-8 >#

Let #theta# be the angle between #vec A and vec C# ; then we

know #cos theta= (vec A*vec C)/(||vec A||*||vec C||)# or

#cos theta=#

#((5*-1)+(2*-3)+(-5*-8))/(sqrt(5^2+2^2+(-5)^2)* sqrt((-1)^2+(-3)^2+(-8)^2))#

or #cos theta= 29/(sqrt 54*sqrt 74)=29/63.21 ~~0.4588#

#:. theta=cos^-1(0.4588)~~62.69^0#

The angle between #vec A and vec C# is #62.69^0# [Ans]