If #A = <5 ,2 ,-5 >#, #B = <6 ,5 ,9 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jul 6, 2017

The angle is #=56#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈5,2,-5〉-〈6,5,9〉=〈-1,-3,-14〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈5,2,-5〉.〈-1,-3,-14〉=-5-6+70=59#

The modulus of #vecA#= #∥〈5,2,-5〉∥=sqrt(25+4+25)=sqrt54#

The modulus of #vecC#= #∥〈-1,-3,-14〉∥=sqrt(1+9+196)=sqrt206#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=59/(sqrt54*sqrt206)=0.56#

#theta=56#º