If #A = <5 ,2 ,8 >#, #B = <2 ,7 ,6 ># and #C=A-B#, what is the angle between A and C?

2 Answers
Apr 7, 2018

The angle is #=69.3^@#

Explanation:

Start by calculating

#vecC=vecA-vecB#

#vecC=〈5,2,8〉-〈2,7,6〉=〈3,-5,2〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈5,2,8〉.〈3,-5,2〉=15-10+16=21#

The modulus of #vecA#= #∥〈5,2,8〉∥=sqrt(25+4+64)=sqrt93#

The modulus of #vecC#= #∥〈3,-5,2〉∥=sqrt(9+25+4)=sqrt38#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=21/(sqrt93*sqrt38)=0.35#

#theta=arccos(0.35)=69.3^@#

Apr 7, 2018

#color(blue)(69.31^@# 2 d.p.

Explanation:

#bbA=[(5),(2),(8)] \ \ \ \ \ bbB=[(2),(7),(6)]#

#bbC=bbA-bbB=[(5),(2),(8)]-[(2),(7),(6)]=[(5-2),(2-7),(8-6)]=[(3),(-5),(2)]#

The angle between two vectors can be found using the Dot Product.

#bba*bb(b)=||bba||*||bb(b)||*cos(theta)#

#cos(theta)=(bba*bb(b))/(||bba||*||bb(b)||)#

We first find the magnitudes of #bbA and bb(B)#

This is given by the Distance Formula:

#||bbv||=sqrt((v_1)^2+(v_2)^2+(v_3)^2)#

Where #v_1,v_2,v_3# are the components of the vector.

#||bbA||=sqrt((5)^2+(2)^2+(8)^2)=sqrt(93)#

#||bbC||=sqrt((3)^2+(-5)^2+(2)^2)=sqrt(38)#

Now the product of:

#bbA*bbC#

This is found by multiplying:

#[(5),(2),(8)]*[(3),(-5),(2)]#

For this we multiply corresponding components and the n sum these:

#[(5),(2),(8)]*[(3),(-5),(2)]=[(5*3+2*-5+8*2)]=21#

Using:

#cos(theta)=(bba*bb(b))/(||bba||*||bb(b)||)#

#cos(theta)=(bbA*bbC)/(||bbA||*||bbC||)#

#cos(theta)=21/(sqrt(93)*sqrt(38))#

#theta=arccos(21/(sqrt(93)*sqrt(38)))~~69.313579120997#

#color(blue)(69.31^@# 2 d.p.

PLOT:

enter image source here