If #A = <5 ,2 ,8 >#, #B = <6 ,5 ,3 ># and #C=A-B#, what is the angle between A and C?

2 Answers

Depending upon the sense of measurement (clockwise or opposite),

the angle is #59.45^o or 121.55^o#

Explanation:

The angle between the vectors A and C is

#theta="arcsin"(|A xx C|/(|A||B|))# or #theta = pi-"arcsin"(|A xx C|/(|A||B|))#

Here, #A=<5, 2, 8>#, and

#C = A - B =<5, 2, 8> - <6, 5, 3> = <-1, -3, 5>#.

#A xx C = <5, 2, 8> xx <-1, -3, 5>#

#<(2)(5)-(8)(-3), (8)(-1)-(5)(5), (5)(-3)-(2)(-1)>#

#=<34, -33, -13>#
So,

#|A|=sqrt(5^2+2^2+8^2)=sqrt 93#

#|C| = sqrt((-1)^2+(-3)^2+5^2)=sqrt 35#

#|A xx C|=sqrt((34)^2+(-33)^2+(-13)^2)=sqrt 2414#.

The angle

#theta = "arcsin" sqrt(2414/((93)(35)))=59.49^o#

Depending upon the sense of measurement (clockwise or opposite),

the angle is #59.49^o or 121.55^o#

Aug 5, 2016

I got #59.45^@# (using Cosine formula ...see A.S.Adikesavan's answer using Sine formula)

Explanation:

My understanding is that:

#color(blue)"-------------------------------------------------------"#
#color(blue)("| ")"Given vectors: "#
#color(blue)("| ")color(white)("XXX")color(blue)( vecu=< u_1,u_2,u_3 >" and"color(white)("XXXXX")color(blue)("|"#
#color(blue)("| ")color(white)("XXX")color(blue)(vecv = < v_1,v_2,v_3>color(white)("XXXXXxXXX")color(blue)("|")#

#color(blue)("| ")#For an angle #color(blue)(theta)# between #color(blue)(vecu)# and #color(blue)(vecv)##color(white)("XXXXxX")color(blue)("|")#
#color(blue)("| ") color(white)("XXX")color(blue)(sin(theta)=(vecu * vecv)/(abs(vecu)*abs(vecv))color(white)("XXXXXXXxXX")color(blue)("|")#

#color(blue)("| ")#where#color(white)("XXXXXXXXXXXX")#
#color(blue)("| ")color(white)("XXX")color(blue)(vecu * vecv = u_1 * v_1+u_2 * v_2 + u_3 * v_3)color(white)("X")color(blue)("|")#
#color(blue)("| ")color(white)("XXX")color(blue)(abs(vecu)=sqrt(u_1^2+u_2^2+u_3^2))color(white)("XXXXXXxX")color(blue)("|")#
#color(blue)("| ")color(white)("XXX")color(blue)(abs(vecv)=sqrt(v_1^2+v_2^2+v_3^2))color(white)("XXXXXXXX")color(blue)("|")#
#color(blue)"-------------------------------------------------------"#

In this case, we are given
#color(white)("XXX")color(red)(vecA= < 5,2,8 >), color(red)(vecB= < 6,5,3>), and color(red)(vecC=vecA-vecB)#
#color(white)("XXX")rarr color(red)(vecC=< -1,-3,5 >)#

#color(red)(vecA) * color(red)(vecC)=(5)(-1)+(2)(-3)+(8)(5) color(red)(= 29)#

#color(red)(abs(vecA))=sqrt(5^2+2^2+8^2)color(red)(=sqrt(93))#
#color(red)(abs(vecC))=sqrt(1^1+3^2+5^2)color(red)(=sqrt(35))#

Therefore
#color(white)("XXX")color(green)(cos(theta))=color(red)(29)/(color(red)(sqrt(93) * sqrt(35)))#

Using a calculator:
#color(white)("XXX")color(green)(cos(theta))=0.508303#
and
#color(white)("XXX")color(green)(theta) = "arccos"(0.508303) = color(green)(59.45^@)#