If #A = <5 ,4 ,3 >#, #B = <2 ,-7 ,5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 12, 2016

The angle is #49.6#º

Explanation:

Let's start by calculating #vecC=vecA-vecB=〈5,4,3〉-〈2,-7,5〉#

#vecC=〈3,11,-2〉#

To calculate the angle, we use the dot productt definition,

#vecA.vecC=∥〈5,4,3〉∥*∥〈3,11,-2〉∥*costheta#
where #theta# is the angle between the 2 vectors

#vecA.vecC=〈5,4,3〉.〈3,11,-2〉=15+44-6=53#

Modulus of #vecA=∥〈5,4,3〉∥=sqrt(25+16+9)=sqrt50#

Modulus of #vecC=∥〈3,11,-2〉∥=sqrt(9+121+4)=sqrt134#

#:. cos theta=53/(sqrt50*sqrt134=0.65#

#theta=49.6#º