If #A = <5 ,6 ,9 >#, #B = <-9 ,-6 ,7 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 14, 2017

The angle is #43.6#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈5,6,9〉-〈-9,-6,7〉=〈14,12,2〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈5,6,9〉.〈14,12,2〉=70+72+18=160#

The modulus of #vecA#= #∥〈5,6,9〉∥=sqrt(25+36+81)=sqrt142#

The modulus of #vecC#= #∥〈14,12,2〉∥=sqrt(196+144+4)=sqrt344#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=160/(sqrt142*sqrt344)=0.72#

#theta=43.6#º