If #A = <6 ,4 ,-3 >#, #B = <7 ,-1 ,5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
May 22, 2017

The angle is #=59.1#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈6,4,-3〉-〈7,-1,5〉=〈-1,5,-8〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈6,4,-3〉.〈-1,5,-8〉=-6+20+24=38#

The modulus of #vecA#= #∥〈6,4,-3〉∥=sqrt(36+16+9)=sqrt61#

The modulus of #vecC#= #∥〈-1,5,-8〉∥=sqrt(1+25+64)=sqrt90#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=38/(sqrt61*sqrt90)=0.51#

#theta=59.1#º