If #A = <6 ,4 ,-7 >#, #B = <3 ,5 ,2 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 2, 2016

The angle is #=36.6#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#=〈6,4,-7〉-〈3,5,2〉=〈3,-1,-9〉#

To calculate the angle #theta# between #vecA# and #vecC#,

we use the dot product definition

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

The dot product is

#vecA.vecC=〈6,4,-7〉.〈3,-1,-9〉=(18-4+63)=77#

The modulus of
#vecA=∥〈6,4,-7〉∥=sqrt(36+16+49)=sqrt101#

The modulus of
#vecC=∥〈3,-1,-9〉∥=sqrt(9+1+81)=sqrt91#

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=77/(sqrt101*sqrt91)=0.8#

#theta=36.6#º