If A = <6 ,-7 ,5 >A=<6,7,5>, B = <1 ,-3 ,-8 >B=<1,3,8> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Jul 8, 2017

The angle is =36º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈6,-7,5〉-〈1,-3,-8〉=〈5,-4,13〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈6,-7,5〉.〈5,-4,13〉=30+28+65=123

The modulus of vecA= ∥〈6,-7,5〉∥=sqrt(36+49+25)=sqrt110

The modulus of vecC= ∥〈5,-4,13〉∥=sqrt(25+16+169)=sqrt210

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=123/(sqrt110*sqrt210)=0.81

theta=36º