If #A = <6 ,-7 ,5 >#, #B = <1 ,-5 ,-8 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Aug 2, 2017

The angle is #=42.4^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈6,-7,5〉-〈1,-5,-8〉=〈5,-2,13〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈6,-7,5〉.〈5,-2,13〉=30+14+65=109#

The modulus of #vecA#= #∥〈6,-7,5〉∥=sqrt(36+49+25)=sqrt110#

The modulus of #vecC#= #∥〈5,-2,13〉∥=sqrt(25+4+169)=sqrt198#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=109/(sqrt110*sqrt198)=0.74#

#theta=42.4^@#