If #A = <6 ,-7 ,8 >#, #B = <1 ,-5 ,-2 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 8, 2017

The angle is #=26.6#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈6,-7,8〉-〈1,-5,-2〉=〈5,-2,10〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈6,-7,8〉.〈5,-2,10〉=30+14+80=124#

The modulus of #vecA#= #∥〈6,-7,8〉∥=sqrt(36+49+64)=sqrt149#

The modulus of #vecC#= #∥〈5,-2,10〉∥=sqrt(25+4+100)=sqrt129#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=124/(sqrt149*sqrt129)=0.894#

#theta=26.6#º