If A = <6 ,8 ,-3 >A=<6,8,3>, B = <7 ,1 ,-4 >B=<7,1,4> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Nov 8, 2016

The angle is 50.9º

Explanation:

Let's start by calculating vecC=vecA-vecB
vecC=〈6,8,-3〉-〈7,1,-4〉=〈-1,7,1〉
The angle between vecA and vecC is given by the dot product definition
vecA.vecC=∥vecA∥*∥vecC∥costheta

where theta is the angle between vecA an vecC

:. cos theta=vecA.vecC/(∥vecA∥*∥vecC∥)
The dot product is vecA.vecC=〈6,8,-3〉.〈-1,7,1〉=-6+56-3=47
The modulus of vecA=∥vecA∥=sqrt(36+64+9)=sqrt109
The modulus of vecC=∥vecC∥=sqrt(1+49+1)=sqrt51
So costheta=47/(sqrt109*sqrt51)=0.63
theta=50.9º