If #A = <-7 ,1 ,5 >#, #B = <3 ,6 ,1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Apr 4, 2017

The angle is #=34.3#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈-7,1,5〉-〈3,6,1〉=〈-10,-5,4〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈-7,1,5〉.〈-10,-5,4〉=70-5+20=85#

The modulus of #vecA#= #∥〈-7,1,5〉∥=sqrt(49+1+25)=sqrt75#

The modulus of #vecC#= #∥〈-10,-5,4〉∥=sqrt(100+25+16)=sqrt141#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=85/(sqrt75*sqrt141)=0.83#

#theta=34.3#º