If #A= <7 ,-2 ,1 ># and #B= <-2 ,5 ,7 >#, what is #A*B -||A|| ||B||#?

1 Answer
Oct 26, 2017

# bb(ul A) bb( * ) bb(ul B) - || bb(ul A) || \ || bb(ul B) || = -17-18sqrt(13)#

Explanation:

We have:

# bb(ul A) = << 7, -2, 1 >>#
# bb(ul B) = << -2, 5, 7 >>#

So then the scalar product (or dot product) is:

# bb(ul A) bb( * ) bb(ul B) = << 7, -2, 1 >> bb( * ) << -2, 5, 7 >>#
# \ \ \ \ \ \ \ \ \ = (7)(-2) + (-2)(5) + (1)(7)#
# \ \ \ \ \ \ \ \ \ = -14 - 10 + 7#
# \ \ \ \ \ \ \ \ \ = -17#

And the moduli of the vectors are:

# || bb(ul A) || = sqrt( (7)^2 + (-2)^2 + (1)^2 ) #
# \ \ \ \ \ \ \ = sqrt(49+4+1)#
# \ \ \ \ \ \ \ = sqrt(54)#

# || bb(ul B) || = sqrt( (-2)^2 + (5)^2 + (7)^2 ) =#
# \ \ \ \ \ \ \ = sqrt(4+25+49)#
# \ \ \ \ \ \ \ = sqrt(78)#

And so:

# bb(ul A) bb( * ) bb(ul B) - || bb(ul A) || \ || bb(ul B) || = -17-sqrt(54)sqrt(78)#
# " " = -17-sqrt(4212)#
# " " = -17-18sqrt(13)#