If A = <7 ,-3 ,6 >, B = <4 ,-7 ,-5 > and C=A-B, what is the angle between A and C?

1 Answer
Mar 24, 2016

alpha~=27,04 ^o

Explanation:

"there are five steps:"
1. "find A-B=C"
2. "find dot product A.B"
3. "find ||A|| (magnitude of A)"
4. "find ||B|| (magnitude of C)"
5. "use " A.C=||A||*||C||*cos alpha" formula"

Step-1:
A= <7,-3,6>" "B<4,-7,-5>
C=A-B
C_x=A_x-B_x=7-4" ; "C_x=3
C-y=A_y-B_y=-7+3=-4" ; "C_y=-4
C_z=A_z-B_z=6+5=11" ; "C_z=11
C= <3,-4, 11>
"Step-2:"
"now let's find the dot product of A.C"
A.C=A_x*C_x+A_y*C_y+A_z*C_z
A.C=7*3+(-3)*(-4)+6.11
A.C=21+12+66
A.C=99
"let's find the magnitude of A and C"
"Step-3:"
||A||=sqrt(A_x^2+A_y^2+A_z^2)" "||A||=sqrt(7^2+(-3)^2+6^2)

||A||=sqrt(49+9+36)" "||A||=sqrt(94)
"Step-4:"
||C||=sqrt(C_x^2+C_y^2+C_z^2)" "||C||=sqrt(3^2+(-4)^2+11^2)
||C||=sqrt(9+16+121)" "||C||=sqrt(146)

"now,let's use dot product formula"
"Step-5:"
A.C=||A||*||C||*cos alpha
A.C=99
||A||=sqrt94
||C||=sqrt146

99=sqrt94 *sqrt 146 *cos alpha
99=sqrt(94*146)*cos alpha
99=111,15*cos alpha
cos alpha=99/(111,15)=0,8906882591
alpha~=27,04 ^o