If #A = <7 ,-5 ,4 >#, #B = <4 ,7 ,-3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Mar 14, 2018

The angle is #=36.1^@#

Explanation:

Start by calculating

#vecC=vecA-vecB#

#vecC=〈7,-5,4〉-〈4,7,-3〉=〈3,-12,7〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈7,-5,4〉.〈3,-12,7〉=21+60+28=109#

The modulus of #vecA#= #∥〈7,-5,4〉∥=sqrt(49+25+16)=sqrt90#

The modulus of #vecC#= #∥〈3,-12,7〉∥=sqrt(9+144+49)=sqrt202#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=109/(sqrt90*sqrt202)=0.81#

#theta=arccos(0.81)=36.1^@#