If #A = <7 ,-5 ,6 >#, #B = <4 ,4 ,9 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 13, 2016

The angle is #=62.6#º

Explanation:

We start by calculating #vecC#

#vecC=vecA-vecB#

#=〈7,-5,6〉-〈4,4,9〉=〈3,-9,-3〉#

The angle between 2 vectors is given by the dot product.

#vecA.vecC=∥vecA∥*∥vecC∥*costheta#

The dot product is #〈7,-5,6〉.〈3,-9,-3〉=21+45-18=48#

The modulus of #vecA=∥〈7,-5,6〉∥=sqrt(49+25+36)=sqrt110#

The modulus of #vecC=∥〈3,-9,-3〉∥=sqrt(9+81+9)=sqrt99#

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)#

#=48/(sqrt110sqrt99)=0.46#

#theta=62.6#º