If #A = <7 ,9 ,4 >#, #B = <4 ,6 ,-3 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 14, 2017

The angle is #=39.8^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈7,9,4〉-〈4,6,-3〉=〈3,3,7〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈7,9,4〉.〈3,3,7〉=21+27+28=76#

The modulus of #vecA#= #∥〈7,9,4〉∥=sqrt(49+81+16)=sqrt146#

The modulus of #vecC#= #∥〈3,3,7〉∥=sqrt(9+9+49)=sqrt67#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=76/(sqrt146*sqrt67)=0.77#

#theta=39.8^@#