If #A = <8 ,1 ,4 >#, #B = <6 ,5 ,4 ># and #C=A-B#, what is the angle between A and C?

2 Answers
Mar 12, 2016

#≈ 72.65^@#

Explanation:

To calculate the angle between 2 vectors #ula and ulc #

Use : #costheta = (ula . ulc )/(|ula||ulc| #

where #theta" is the angle between the vectors " #

now C = A - B = (8,1,4) - (6,5,4) = (2,-4,0)

hence #ula . ulc = (8,1,4) . (2,-4,0)#

# = (8xx2) + (1xx-4) + (4xx0) = 16 - 4 + 0 = 12 #

#|ula| = sqrt(8^2+1^2+4^2) = sqrt81 = 9 #

and #|ulc| = sqrt(2^2+(-4)^2+0^2) = sqrt20 #

#rArrtheta = cos^-1 (12/(9xxsqrt20) )≈ 72.65^@ #

Mar 12, 2016

#alpha=88,58 #

Explanation:

#A= <8,1,4>" "B= <6,5,4>#
#1)"find " A-B=C#
#C_x=A_x-B_x=8-6=2#
#C_y=A_y-B_y=1-5=-4#
#C_z=A_z-B_z=4-4=0#
#C= <2,-4,0>#
#2)"find dot product of A and C"#
#A*C=A_x*C_x+A_y*C_y+A_z*C_z#
#A*C=8*2+1*(-4)+4*0=16-4+0=12#
#3)"find magnitude of A and C"#
#||A||=sqrt(8^2+1^2+4^2)=sqrt(64+1+16)=sqrt81#
#||C||=sqrt(2^2(-4)^2+0^2)=sqrt(4+16+0)=sqrt20#
#4) "find angle between A and C using the dot product formula"#
#A*C=||A||*||C||*cos alpha#
#12=sqrt81*sqrt20*cos alpha#
#cos alpha=12/sqrt(81*20)#
#alpha=88,58 #