If #A = <8 ,1 ,-5 >#, #B = <6 ,-2 ,4 >#, and #C=A-B#, what is the angle between A and C?

1 Answer
Jan 5, 2017

The answer is #=45.9#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈8,1,-5〉-〈6,-2,4〉=〈2,3,-9〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈8,1,-5〉.〈2,3,-9〉=16+3+45=64#

The modulus of #vecA#= #∥〈8,1,-5〉∥=sqrt(64+1+25)=sqrt90#

The modulus of #vecC#= #∥〈2,3,-9〉∥=sqrt(4+9+81)=sqrt94#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=64/(sqrt90*sqrt94)=0.696#

#theta=45.9#º