If #veca = <8 ,1 ,-5 >#, #vecb = <6 ,-2 ,-8 ># and #vecc=veca-vecb#, what is the angle between #veca# and #vecc#?
1 Answer
I get about
The angle between
#\mathbf(vecacdotvecc = || veca ||cdot|| vecc || costheta)#
Therefore, we will need to find
#color(green)(veca - vecb)#
#= << 8,1,-5 >> - << 6,-2,-8 >>#
#= << 8-6, 1-(-2), -5-(-8) >>#
#= color(green)(<< 2,3,3 >> = vecc)#
Next, the angle between
#costheta = (vecacdotvecc)/(|| veca ||cdot|| vecc ||)#
#color(green)(theta = arccos((vecacdotvecc)/(|| veca ||cdot|| vecc ||)))#
Afterwards, we do not yet know
#color(green)(veca cdot vecc)#
#= << 8,1,-5 >> cdot << 2,3,3 >>#
#= 8*2 + 1*3 + -5*3#
#= 16 + 3 - 15 = color(green)(4)#
And lastly, we'll need to know the product of the norms of
#\mathbf(|| vecv || = sqrt(vecvcdotvecv)),#
so we'll need to dot
#color(green)(|| veca ||) = sqrt(veca cdot veca)#
#= sqrt(<< 8,1,-5 >>cdot<< 8,1,-5 >>)#
#= sqrt(8*8 + 1*1 + (-5)*(-5))#
#= sqrt(64 + 1 + 25)#
#= color(green)(sqrt(90))#
And now for
#color(green)(|| vecc ||) = sqrt(vecc cdot vecc)#
#= sqrt(<< 2,3,3 >>cdot<< 2,3,3 >>)#
#= sqrt(2*2 + 3*3 + 3*3)#
#= sqrt(4+9+9)#
#= color(green)(sqrt(22))#
Finally, we can combine all this to get the angle between
#color(blue)(theta) = arccos((vecacdotvecc)/(|| veca ||cdot|| vecc ||))#
#= arccos(4/(sqrt(90)*sqrt(22)))#
#= arccos(4/(3sqrt(10)*sqrt(22)))#
#= arccos(4/(3sqrt(220)))#
#= arccos(cancel(4)^(2)/(3*cancel(2)sqrt(55)))#
#= arccos(2/(3*sqrt(55)))#
#~~# #color(blue)("1.48 rad")# or about#color(blue)(84.84^@)# .
Indeed, that should be the answer, as we see the result here to be:
#arccos(2/(3sqrt55))# .