If A = <8 ,1 ,-5 >, B = <6 ,5 ,-8 > and C=A-B, what is the angle between A and C?

1 Answer
Feb 15, 2016

theta=93.366^@

Explanation:

vec A=<8,1-5> => |vec A|=sqrt(64+1+25)=sqrt(90)=3sqrt(10)
vec B=<6,5,-8>
vec C=vec A - vec B=<8-6,1-5,-5+8> =<2,-4,3>
-> \vec C|=sqrt(4+16+9)=sqrt(29)

vecA*vecC=|vec A||vec C|*cos theta
cos theta=(vec A*vec C)/(|vec A||vec C|)=(8*2+1(-4)+(-5)(3))/(3sqrt(10)*sqrt(29))=(16-4-15)/(3sqrt(290))=-3/(3sqrt(290))=-1/sqrt(290) -> theta=93.366^@