If #A = <8 ,1 ,-7 >#, #B = <6 ,-2 ,5 >#, and #C=A-B#, what is the angle between A and C?

1 Answer
Feb 18, 2017

The angle is #=39.7#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈8,1,-7〉-〈6,-2,5〉=〈2,3,-12〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈8,1,-7〉.〈2,3,-12〉=16+3+84=103#

The modulus of #vecA#= #∥〈8,1,-7〉∥=sqrt(64+1+49)=sqrt114#

The modulus of #vecC#= #∥〈2,3,-12〉∥=sqrt(4+9+144)=sqrt157#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=103/(sqrt114*sqrt157)=0.77#

#theta=arccos(0.77)=39.7#º