If #A= <-8 ,3 ,-1 ># and #B= <-3 ,4 ,8 >#, what is #A*B -||A|| ||B||#?

1 Answer
Mar 24, 2016

The dot (scalar) product #A*B=28#. The length of vector A, #||A||=#, and the length of vector B, #||B||=#. Over all, #A*B-||A||||B||=28-80.84=-52.84# #units#.

Explanation:

The question is essentially 'What is the difference between the dot product of two vectors and the product of their lengths?'

First find the dot product:

# A*B = ((-8*-3)+(3*4)+(-1*8)#
#= (24+12-8)=28# #units#

Now the length of each vector:

#||A||=sqrt((-8)^2+3^2+(-1)^2)=sqrt(64+9+1)=sqrt74~~8.6#

#||B||=sqrt((-3)^2+4^2+8^2)=sqrt(9+16+64)=sqrt89~~9.4#

So the product #||A||||B||=8.6xx9.4=80.84#