If #A = <8 ,3 ,2 >#, #B = <6 ,-1 ,5 >#, and #C=A-B#, what is the angle between A and C?

1 Answer
Dec 3, 2016

The angle is #=62.3#º

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈8,3,2〉-〈6,-1,5〉=〈2,4,-3〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈8,3,2〉.〈2,4,-3〉=16+12-6=22#

The modulus of #vecA#= #∥〈8,3,2〉∥=sqrt(64+9+4)=sqrt77#

The modulus of #vecC#= #∥〈2,4,-3〉∥=sqrt(4+16+9)=sqrt29#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=22/(sqrt77*sqrt29)=0.47#

#theta=62.3#º