If #A = <8 ,3 ,2 >#, #B = <6 ,-4 ,5 >#, and #C=A-B#, what is the angle between A and C?

1 Answer
Nov 7, 2016

The angle is #63.3º#

Explanation:

The angle between two vectors is given by the dot product.
#veca.vecc=∥veca∥*∥vecc∥costheta#
where #theta# is the angle between the two vectors
#vecc=veca-vecb=〈8,3,2〉-〈6,-4,5〉=〈2,7,-3〉#
The dot product is #veca.vecc=〈8,3,2〉.〈2,7,-3〉=16+21-6=31#
The modulus of #veca# is #=∥veca∥=∥〈8,3,2〉∥=sqrt(64+9+4)=sqrt77#
The modulus of #vecc# is #=∥vecc∥=∥〈2,7,-3〉∥=sqrt(4+49+9)=sqrt62#

So #costheta=31/(sqrt77*sqrt62)=0.449#
#theta=63.3º#