If #A = <8 ,9 ,4 >#, #B = <6 ,-9 ,-1 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jun 21, 2018

The angle is #=33.4^@#

Explanation:

Start by calculating

#vecC=vecA-vecB#

#vecC=〈8,9,4〉-〈6,-9,-1〉=〈2,18,6〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈8,9,4〉.〈2,18,6〉=16+162+24=202#

The modulus of #vecA#= #∥〈8,9,4〉∥=sqrt(64+81+16)=sqrt161#

The modulus of #vecC#= #∥〈2,18,6〉∥=sqrt(4+324+36)=sqrt364#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=202/(sqrt161*sqrt364)=0.83#

#theta=arccos(0.83)=33.4^@#