If #A = <-9 ,2 ,5 >#, #B = <-8 ,3 ,4 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Aug 15, 2017

The angle is #=48.7^@#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈-9,2,5〉-〈-8,3,4〉=〈-1,-1,1>

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈-9,2,5〉.〈-1,-1,1〉=9-2+5=12#

The modulus of #vecA#= #∥〈-9,2,5〉∥=sqrt(81+4+25)=sqrt110#

The modulus of #vecC#= #∥〈-1,-1,1〉∥=sqrt(1+1+1)=sqrt3#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=12/(sqrt110*sqrt3)=0.66#

#theta=48.7^@#