If a,b are real and a^2+b^2=1 then show that the equation {sqrt(1+x)-isqrt(1-x)}/{sqrt(1+x)+isqrt(1-x)}=a-ib is satisfy by a real value of x?

1 Answer
Jan 2, 2018

Please see below.

Explanation:

.

#a^2+b^2=1# (equation #1#)

#(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=((sqrt(1+x)-isqrt(1-x))(sqrt(1+x)+isqrt(1-x)))/((sqrt(1+x)+isqrt(1-x))(sqrt(1+x)+isqrt(1-x)))=(1+x-i^2(1-x))/(1+x+i^2(1-x)+2isqrt(1-x^2))=#

#(1+x-(-1)(1-x))/(1+x+(-1)(1-x)+2sqrt(i^2(1-x^2)))=#

#(1+x+1-x)/(1+x-1+x+2sqrt(x^2-1))=2/(2x+2sqrt(x^2-1))=1/(x+sqrt(x^2-1))=#

#(x-sqrt(x^2-1))/((x+sqrt(x^2-1))(x-sqrt(x^2-1)))=(x-sqrt(x^2-1))/(x^2-x^2+1)=#

#x-sqrt(x^2-1)=x-sqrt((-1)(1-x^2))=x-sqrt(i^2(1-x^2))=#

#x-isqrt(1-x^2)#

If we set #x=a# then from equation #1# we get:

#x^2+b^2=1#

#b^2=1-x^2#

#b=sqrt(1-x^2)#

We can plug this in to get:

#(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=x-isqrt(1-x^2)=a-ib#