Here,
#a+b+c=0...to(1)#
Squaring both sides,
#(a+b+c)^2=0^2#
#=>a^2+b^2+c^2+2ab+2bc+2ca=0#
#color(red)(=>a^2+b^2+c^2=-2(ab+bc+ca)...to(2)#
Now,
#(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc#
#(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2+2abc(b+c+a)#
#(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2+2abc(0)toFrom (1)#
#color(blue)((ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2...to(3)#
So, from #color(red)((2)) andcolor(blue)( (3)#
#(a^2+b^2+c^2)/(a^2b^2+b^2c^2+c^2a^2)=(-2(ab+bc+ca))/((ab+bc+ca)^2)=(-2)/(ab+bc+ca)#
OR
#(a^2+b^2+c^2)/(a^2b^2+b^2c^2+c^2a^2)=(-2)/(ab+bc+ca)#
#=>(a^2+b^2+c^2)/(a^2b^2+b^2c^2+c^2a^2)=((-2)(-2))/(-2(ab+bc+ca)#
#=>(a^2+b^2+c^2)/(a^2b^2+b^2c^2+c^2a^2)=4/(a^2+b^2+c^2)tocolor(red)( From(2)#
Note:
If your question is :
#(a^2+b^2+c^2)^color(red)(2)/(a^2b^2+b^2c^2+c^2a^2)= ??, then,#
#(a^2+b^2+c^2)^2/(a^2b^2+b^2c^2+c^2a^2)=4#