# If a point moves in straight line in such a manner that its acceleration is proportional to its speed (a ∝ v) , what is the relation between distance covered and speed?

## a) $x \propto v$ b) $x \propto {v}^{2}$ c) $x \propto {v}^{3}$ d) $x \propto \sqrt{v}$

Then teach the underlying concepts
Don't copy without citing sources
preview
?

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

2

### This answer has been featured!

Featured answers represent the very best answers the Socratic community can create.

A08 Share
Dec 29, 2017

I get (a)

#### Explanation:

Given that acceleration $a \propto v$, speed

From definition of acceleration and velocity
$\implies \frac{\mathrm{dv}}{\mathrm{dt}} \propto \frac{\mathrm{dx}}{\mathrm{dt}}$
Integrating both sides with time $\mathrm{dt}$, for LHS we get

$\int \frac{\mathrm{dv}}{\mathrm{dt}} \mathrm{dt} = v + c$
where $c$ is a constant of integration and can be found from initial conditions.

For RHS we get

$\int \frac{\mathrm{dx}}{\mathrm{dt}} \mathrm{dt} = x + {c}_{1}$
where ${c}_{1}$ is a constant of integration and can be found from initial conditions.

Assuming that initially at $t = 0$, acceleration, velocity and displacement all are $= 0$. Both $c \mathmr{and} {c}_{1}$ are$= 0$. We get

$v \propto x$
$\implies x \propto v$

• 6 minutes ago
• 8 minutes ago
• 8 minutes ago
• 14 minutes ago
• 57 seconds ago
• 2 minutes ago
• 3 minutes ago
• 3 minutes ago
• 3 minutes ago
• 4 minutes ago
• 6 minutes ago
• 8 minutes ago
• 8 minutes ago
• 14 minutes ago