If #cos(50)=a#, then how do you express #tan(130)# in terms of a?

2 Answers
Feb 8, 2015

One method

Assume #a=cos50^0#
#tan(130^0) = sin(130^0)/cos(130^0)#
#sin(130^0)=sin(90^0+40^0)#
Expand using #sin(A+B)# formula
This will give you
#sin(130^0) = cos(40^0)#
#cos(40^0) = sin(50^0)# therefore
#sin(130^0) = sin(50^0)#
#sin(130^0) = +sqrt(1-cos^2(50^0))#
#sin(130^0) =sqrt(1-a^2)#
Similarly for #cos(130^0)# we get
#cos(130^0) = -sin(40^0)#
#cos (50^0)=sin(40^0)# hence
#cos(130^0) = -cos(50^0)#
Combining them gives

# tan(130^0) = (-sqrt(1-a^2))/a#

Aug 31, 2015

You can use some identities to make this easier.

#cos(50^o) = cos(-50^o) = -cos(130^o)#

due to

#cos(x) = cos(-x)#
#cos(x) = -cos(x+pi)#

Thus, you have:

#tan(130^o) = (sin(130^o))/(cos(130^o)) = (-sin(130^o))/(-cos(130^o))#

Now, as for determining #-sin(130^o)#... Note that #sin^2(130^o) + cos^2(130^o) = 1#. Therefore:

#sin(130^o) = sqrt(1-cos^2(130^o))#

#=> -sin(130^o) = -sqrt(1-cos^2(130^o))#

Finally, you get:

#color(blue)(tan(130^o)) = (-sin(130^o))/(-cos(130^o)) = (-sqrt(1-(cos(130^o))^2))/(-cos(130^o))#

#= (-sqrt(1-(-cos(50^o))^2))/(cos(50^o))#

#= (-sqrt(1-cos^2(50^o)))/(cos(50^o))#

#= color(blue)((-sqrt(1-a^2))/(a))#