#cos x cos ( x - pi/3 ) = cos x ( cosx cos (pi/3) + sin x sin (pi/3) )#
#= 1/2 ( cos^2x + sqrt3 sin x cos x )#
#= 1/2( 1/2(1 + cos 2x ) + 1/2sqrt 3 sin 2x )#
#= 1/4 + cos ( 2x - pi/3 )#
#= 1 -n/6#. So,
#cos ( 2x - pi/3 ) = 3/4 - n/6 in [ -1, 1 ]#
#rArr -n/6 in [ -1 - 3/4, 1 - 3/4 ] = [ - 7/4, 1/4 ]#
# n/6 in [ - 1/4, 7/4 ]#, and so,
#n in [ -3/2, 21/2 ]#