We know that,
#(1)f'(c)=lim_(xtoc) (f(x)-f(c))/(x-c) ,# take #x=9#
#=>f'(9)=lim_(xto9) (f(x)-f(9))/(x-9) ,where, f(9)=9#
#=>f'(9)=lim_(xto9)(f(x)-9)/(x-9) ,where, f'(9)=4#
#=>color(brown)(lim_(xto9)(f(x)-9)/(x-9)=4.....(2)#
We take,
#L=lim_(xto9) (sqrtf(x)-3)/(sqrtx-3)#
#color(white)(L)=lim_(xto9)(sqrtf(x)-3)/(sqrtx-3)xxcolor(red)
((1))xxcolor(blue)((1))#
#color(white)(L)=lim_(xto9)(sqrtf(x)-3)/(sqrtx-3)xxcolor(red)((sqrtf(x)+3)/(sqrtf(x)+3))xxcolor(blue)((sqrtx+3)/(sqrtx+3))#
#color(white)(L)=lim_(xto9)((sqrtf(x))^2-(3)^2)/((sqrtx)^2-(3)^2)xx(color(blue)(sqrtx+3))/(color(red)(sqrtf(x)+3))#
#color(white)(L)=color(brown)(lim_(xto9)(f(x)-9)/(x-9))xxlim_(xto9)(sqrtx+3)/(sqrtf(x)+3)...tocolor(brown)([use (2)]#
#color(white)(L)=color(brown)(4)xx(sqrt9+3)/(sqrtf(9)+3)#
#color(white)(L)=4[(3+3)/(sqrt9+3)]#
#:.L=4{6/6}=4#