If #f(9)=9# and #f^'(9)=4#, then what is the value of #lim_(x to9)(sqrt(f(x))-3)/(sqrtx -3)?#

1 Answer
Jun 15, 2018

#lim_(xto9) (sqrtf(x)-3)/(sqrtx-3)=4#

Explanation:

We know that,

#(1)f'(c)=lim_(xtoc) (f(x)-f(c))/(x-c) ,# take #x=9#

#=>f'(9)=lim_(xto9) (f(x)-f(9))/(x-9) ,where, f(9)=9#

#=>f'(9)=lim_(xto9)(f(x)-9)/(x-9) ,where, f'(9)=4#

#=>color(brown)(lim_(xto9)(f(x)-9)/(x-9)=4.....(2)#

We take,

#L=lim_(xto9) (sqrtf(x)-3)/(sqrtx-3)#
#color(white)(L)=lim_(xto9)(sqrtf(x)-3)/(sqrtx-3)xxcolor(red) ((1))xxcolor(blue)((1))#

#color(white)(L)=lim_(xto9)(sqrtf(x)-3)/(sqrtx-3)xxcolor(red)((sqrtf(x)+3)/(sqrtf(x)+3))xxcolor(blue)((sqrtx+3)/(sqrtx+3))#

#color(white)(L)=lim_(xto9)((sqrtf(x))^2-(3)^2)/((sqrtx)^2-(3)^2)xx(color(blue)(sqrtx+3))/(color(red)(sqrtf(x)+3))#

#color(white)(L)=color(brown)(lim_(xto9)(f(x)-9)/(x-9))xxlim_(xto9)(sqrtx+3)/(sqrtf(x)+3)...tocolor(brown)([use (2)]#

#color(white)(L)=color(brown)(4)xx(sqrt9+3)/(sqrtf(9)+3)#

#color(white)(L)=4[(3+3)/(sqrt9+3)]#

#:.L=4{6/6}=4#