If #f# is a continuous function such that #int_0^xf(t)dt=xe^(2x)# + #int_0^xe^-tf(t)dt# for all #x#, fi nd an explicit formula for #f(x)# ?

If #f# is a continuous function such that #int_0^xf(t)dt=xe^(2x)# + #int_0^xe^-tf(t)dt# for all #x#, fi nd an explicit formula for #f(x)# ?

1 Answer
Jun 23, 2018

#f(x)=(e^(3x)(2x+1))/(e^x-1)#

Explanation:

#int_0^xf(t)dt=xe^(2x)+int_0^xe^(-t)f(t)dt#

Differentiate both sides with respect to #x# (hint: use the fundamental rule of calculus and the product rule):

#f(x)=2xe^(2x)+e^(2x)+e^(-x)f(x)#

Now, arrange both sides to get
#f(x)=(e^(2x)(2x+1))/(1-e^(-x))#
#color(white)(f(x))=(e^(3x)(2x+1))/(e^x-1)#