Given
#f(r)=cos2rtheta#
So
#f(r+1)-f(r)=cos2(r+1)theta-cos2rtheta#
#=>f(r+1)-f(r)=-2sin(2r+1)thetasintheta#
#=>f(r)-f(r+1)=2sin(2r+1)thetasintheta#
Now putting #r=1,2,3,4.....n# and adding we get
for #r=1 tof(1)-f(2)=2sin(3theta)sintheta#
for #r=2 tof(2)-f(3)=2sin(5theta)sintheta#
for #r=3 tof(3)-f(4)=2sin(7theta)sintheta#
#-------------#
#-------------#
#-------------#
for #r=n tof(n)-f(n+1)=2sin((2n+1)theta)sintheta#
Adding we get
#f(1)-f(n+1)=2sintheta(sin3theta+sin5theta+………"upto n terms")#
So
#(sin3theta+sin5theta+………"upto n terms")=(f(1)-f(n+1))/(2sintheta)#
#=(cos2theta-cos2(n+1)theta)/(2sintheta)#
#=(2sin(n+2)thetasinntheta)/(2sintheta)#
#=(sin(n+2)thetasinntheta)/sintheta#