To find #f(g(x))# we must substitute #color(red)(g(x))# for #color(red)(x) on the left side of the #f(x)# function and #color(red)(5 - 2x)# for each occurrence of #color(red)(x)# on the right side of the #f(x)# function.
#f(color(red)(x)) = 2color(red)(x) + 3# becomes:
#f(color(red)(color(red)(g(x)))) = 2(color(red)(5 - 2x)) + 3#
#f(color(red)(color(red)(g(x)))) = (2 xx 5) - (2 xx 2x) + 3#
#f(color(red)(color(red)(g(x)))) = 10 - 4x + 3#
#f(color(red)(color(red)(g(x)))) = 10 + 3 - 4x#
#f(color(red)(color(red)(g(x)))) = 13 - 4x#