If #f( x ) = 2x + 3 and g ( x ) = 5- 2x#, what is #f(g(x))#?

1 Answer
Feb 4, 2017

#f(g(x)) = 13 - 4x#

Explanation:

To find #f(g(x))# we must substitute #color(red)(g(x))# for #color(red)(x) on the left side of the #f(x)# function and #color(red)(5 - 2x)# for each occurrence of #color(red)(x)# on the right side of the #f(x)# function.

#f(color(red)(x)) = 2color(red)(x) + 3# becomes:

#f(color(red)(color(red)(g(x)))) = 2(color(red)(5 - 2x)) + 3#

#f(color(red)(color(red)(g(x)))) = (2 xx 5) - (2 xx 2x) + 3#

#f(color(red)(color(red)(g(x)))) = 10 - 4x + 3#

#f(color(red)(color(red)(g(x)))) = 10 + 3 - 4x#

#f(color(red)(color(red)(g(x)))) = 13 - 4x#