If #f(x)=3x^2-x+2#, what is #f(2)#? What about #f(a+h)#?

1 Answer
Dec 22, 2016

#f(2)=12#

#f(x+h)=3a^2+6ah+3h^2-a-h+2#

Explanation:

#f(x)=3x^2-x+2#

#f(2)" "#means replace all teh #" "xs" "#with 2 and evaluated

#f(2)=3xx2^2-2+2#

#f(x)=3xx4-2+2=12#

#f(a+h)=3(a+h)^2-(a+h)+2#

multiply out and simplify if possible.

#f(a+h)=3(a^2+2ah+h^2)-(a+h)+2#

#f(a+h)=3a^2+6ah+3h^2-a-h+2#