If #f( x ) = \frac { 4} { x - 7)# and #g ( x ) = \frac { 5} { 7x }#, what is #(f*g)(x)#?

2 Answers
Mar 6, 2017

See the entire explanation below:

Explanation:

#(f * g)(x) = f(x) * g(x)#

Therefore:

#(f*g)(x) = 4/(x - 7) * 5/(7x)#

#(f*g)(x) = (4 * 5)/(7x(x - 7))#

#(f*g)(x) = 20/((7x * x) - (7x * 7))#

#(f*g)(x) = 20/(7x^2 - 49x)#

Mar 6, 2017

Depending upon what was meant:
#(f*g)(x)=(fxxg)(x)=20/(7x^2-49x)#
or
#(fcircg)(x)=f(g(x))=(28x)/(5-49x)#

Explanation:

The form of your question is confusing. I am not certain if you really meant #(f"*"g)(x)# (as you wrote), meaning #(fxxg)(x)# or if you meant the composite form #(fog)(x)#, meaning #f(g(x))#.

Answer 1: If you really meant #f# multiplied by #g#
Given
#color(white)("XXX")f(x)=4/(x-7)#
#color(white)("XXX")g(x)=5/(7x)#
then
#color(white)("XXX")(f xx g)(x)=4/(x-7)xx5/(7x)=20/(7x^2-49x)#

**Answer 2: If you intended #(fog)(x)#
Given
#color(white)("XXX")f(color(red)(x))=4/(color(red)(x)-7)#
#color(white)("XXX")color(blue)(g(x))=color(blue)(5/(7x))#
replacing #color(red)(x)# in the definition of #f(color(red)(x))#
with #color(blue)(g(x))#
#color(white)("XXX")(fog)(x) = f(color(blue)(g(x)))=4/(color(blue)(g(x))-7)#

#color(white)("XXXXXXXXXXXXXX")=4/(color(blue)(5/(7x))-7)#

#color(white)("XXXXXXXXXXXXXX")=4/((5-49x)/(7x))#

#color(white)("XXXXXXXXXXXXXX")=4xx(7x)/(5-49x)#

#color(white)("XXXXXXXXXXXXXX")=(28x)/(5-49x)#