The form of your question is confusing. I am not certain if you really meant #(f"*"g)(x)# (as you wrote), meaning #(fxxg)(x)# or if you meant the composite form #(fog)(x)#, meaning #f(g(x))#.
Answer 1: If you really meant #f# multiplied by #g#
Given
#color(white)("XXX")f(x)=4/(x-7)#
#color(white)("XXX")g(x)=5/(7x)#
then
#color(white)("XXX")(f xx g)(x)=4/(x-7)xx5/(7x)=20/(7x^2-49x)#
**Answer 2: If you intended #(fog)(x)#
Given
#color(white)("XXX")f(color(red)(x))=4/(color(red)(x)-7)#
#color(white)("XXX")color(blue)(g(x))=color(blue)(5/(7x))#
replacing #color(red)(x)# in the definition of #f(color(red)(x))#
with #color(blue)(g(x))#
#color(white)("XXX")(fog)(x) = f(color(blue)(g(x)))=4/(color(blue)(g(x))-7)#
#color(white)("XXXXXXXXXXXXXX")=4/(color(blue)(5/(7x))-7)#
#color(white)("XXXXXXXXXXXXXX")=4/((5-49x)/(7x))#
#color(white)("XXXXXXXXXXXXXX")=4xx(7x)/(5-49x)#
#color(white)("XXXXXXXXXXXXXX")=(28x)/(5-49x)#