If #f(x) = x^2- 2#, how do you find expressions for f(-x)?

2 Answers
Apr 9, 2018

#f(-x)=x^2-2=f(x)#

Explanation:

#f(-x)=(-x)^2-2=x^2-2#

Apr 9, 2018

see solution process below;

Explanation:

I think you mean't, #f^-1(x)# which is the inverse of #f(x)#

But if its, #f(-x)# it should be #-(x^2 - 2)#

Hence;

#f(x)=x^2- 2#

#f(-x)=-(x^2-2)#

#f(-x) =-x^2+ 2 or 2 + x^2#

But if its #f(x)^-1#

Let, #f(x)= y#

#y = x^2 - 2#

Making #x# the subject of formula;

#x^2 - 2 = y#

#x^2 = y + 2#

#x = sqrt(y + 2)#

Therefore;

#f(x)^-1 = sqrt(x + 2)#