If # f(x)=x²-2x+3#, how do you find f(a+h)-f(a)/h?

1 Answer
Oct 4, 2015

Substitute #a+h# and #a# for #x# in the formula for #f(x)# and simplify to find:

#(f(a+h)-f(a))/h = 2a - 2 + h#

Explanation:

#f(x) = x^2-2x+3#

Then:

#(f(a+h) - f(a))/h#

#=(((a+h)^2-2(a+h)+3) - (a^2-2a+3))/h#

#=(color(red)(cancel(color(black)(a^2)))+2ah+h^2-color(blue)(cancel(color(black)(2a)))-2h+color(green)(cancel(color(black)(3)))-color(red)(cancel(color(black)(a^2)))+color(blue)(cancel(color(black)(2a)))-color(green)(cancel(color(black)(3))))/h#

#=2a-2+h#

So:

#lim_(h->0) (f(a+h) - f(a))/h = lim_(h->0) (2a-2+h) = 2a-2#

This is the derivative of #f(x)# at #x = a#