If #g(x)=1^(-x) - x+4#, what is #g(-1)#?

1 Answer
Mar 14, 2017

See the entire solution process below:

Explanation:

To find #g(-1)# we need to substitute #color(red)(-1)# for every occurrence of #color(red)(x)# in #g(x)# and then calculate the result:

#g(color(red)(x)) = 1^-color(red)(x) - color(red)(x) + 4# becomes:

#g(color(red)(-1)) = 1^-color(red)(-1) - color(red)((-1)) + 4#

#g(color(red)(-1)) = 1^color(red)(1) + color(red)(1) + 4#

#g(color(red)(-1)) = 1 + color(red)(1) + 4#

#g(color(red)(-1)) = 6#