If #g(x) = x^5(4.5)^x#, what is #g'(x)#?

1 Answer
Jun 15, 2016

#(dg)/dx =4.5^x xx x^4xx (5 + 1.50408 xx x)#

Explanation:

First consider #y = a^x#. Applying the log transformation to both sides

#log_e y = x log_e a#

Deriving the equation in both sides we get

#dy/y=dx log_e a#

and finally

#dy/dx = y log_e a=a^x log_e a#

So making now

#g(x) = x^n a^x# we have

#(dg)/dx = d/dx(x^n) xx a^x+x^n xx d/dx(a^x)#

so

#(dg)/dx = n x^{n-1}a^x + x^n a^x log_e a#

substituting #n = 5# and #a = 4.5# we have

#(dg)/dx =5xx 4.5^x x^4 + 1.50408xx 4.5^x x^5 #

or

#(dg)/dx =4.5^x xx x^4xx (5 + 1.50408 xx x)#